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On the motion of a lassial harged partile 21. IntrodutionLorentz-Dira equation is widely aepted as the lassial equation of motion ofan elementary point harge interating with its own radiation (see for instane[7, 18, 21, 26℄):
maµ = F µ +

2e2

3c3

(

ȧµ −
1

c2
aλaλv

µ

)

, (1)where F µ = e
c
F µν

extvν is the external eletromagneti fore.It is also well known that this equation is a�eted by some irreoniliable di�ulties,that already show up in the ase of retilinear motion. Consider a free point harge thatenters perpendiularly a parallel-plate apaitor at τ = 0 (proper time) and leaves itat τ1 > 0. For τ < 0 the harge is free, fµ = 0 and the solution to (1) is a uniformretilinear motion, aµ = 0. We an therefore take aµ(0) = 0 and vµ(0) = vµ
in asinitial data to integrate equation (1), so obtaining a unique solution for the veloity vµ.Nevertheless, this solution has the drawbak that, not only aµ(τ) does not vanish for

τ > τ1 (when the external ation has eased), but it grows exponentially for τ → ∞,what is known as runaway solution.Rohrlih [18℄ put forward a way out onsisting in that (1) is not the equation ofmotion, but it must be supplemented with an asymptoti ondition: if the externalfore fµ asymptotially vanishes, then the aeleration aµ asymptotially vanishes too.As a result the resulting equation of motion is of integro-di�erential type and runawaysolutions are ruled out (see also [12℄).This alternative however implies what is alled preaeleration. Although theexternal fore vanishes for τ < 0, the solution to the above integro-di�erential equationpresents non-vanishing aeleration before the fore starts. This is not a surprisingfeature beause, as pointed out in [6℄, it is a onsequene of demanding the asymptotiondition in the future: the integro-di�erential equation of motion itself �foresees� whatwill happen in the future, τ > τ1.It thus seems as though we were faing the following dilemma [6℄: either (a) lassialeletrodynamis is self-ontraditory or (b) Lorentz-Dira equation is not the rightequation that follows from lassial eletrodynamis.In view of this dilemma di�erent stanes are found in the literature. Rohrlih [18℄adopts the alternative (a) and adds that this is not a major trouble beause the time



On the motion of a lassial harged partile 3sale at whih preaeleration shows up is too small (τ0 ≈ 10−23 s for eletrons) farbeyond the limits of validity of the lassial theory. He further stresses that [20℄ �thenotion of �lassial point harge� is an oxymoron . . . � sine lassial physis eases to bevalid below Compton wavelength. Moniz and Sharp also argued [15, 16, 17℄ that lassialeletrodynamis is only onsistent in desribing the motion of harges with radius largerthan the lassial eletron radius, while the quantum theory of nonrelativisti hargesis free of runaways and preaeleration.Other authors [27, 34℄ embrae the alternative (b) on the basis that the derivationof Lorentz-Dira equation involves Taylor expansions and therefore presumes that boththe harge worldline and the external fore are analyti funtions. As a onsequene,equation (1) is not valid in those points where xµ(τ) and fµ(τ) are not analyti.Partiularly, Yaghjian [34℄ studies a harged spherial shell of radius ǫ and obtainsan alternative equation:
maµ = fµ +

2e2

3c3
η(τ)

(

ȧµ −
1

c2
aλaλv

µ

)where η(τ) = 0 for τ < 0 and η(τ) = 1 for τ ≥ 2ǫ/c. In another approah[13, 23, 5, 1, 3, 2, 24℄, the Lorentz-Dira equation is thought of as a neessary �butnot su�ient� ondition the true equation of motion must ful�ll. The true equation ofmotion, whih will not have neither preaeleration nor runaway solutions, is of seondorder and an only be onstruted by using a series expansion or a method of suessiveapproximations.Others [28℄ onsider that the ommented di�ulties with Lorentz Dira equationare not real physial problems, as they aept that aeleration an have a singularityin points where the applied fore has a disontinuity.None of these justi�ations is fully satisfatory to us. Consider a lassial hargemodelled by a harge distribution and the orresponding energy-momentum distributioninside a sphere of radius ǫ. Provided that a suitable set of onstitutive relations isadded, the loal onservation of energy-momentum yields an evolution law for thisontinuous medium, whih is deterministi and ausal: the eletri urrent and theenergy-momentum distribution at t = 0 determine the future values of these magnitudes.It is, to say the least, startling that, on taking the limit ǫ → 0, the ausal anddeterministi nature of the lassial problem is lost.



On the motion of a lassial harged partile 4Apparently Lorentz-Dira equation is an unavoidable and �awless onsequene oflassial eletrodynamis plus the loal onservation of total energy and momentum[7, 18, 26℄. However, as the eletromagneti �eld ontribution to the energy-momentumtensor is singular on the harge's worldline �it behaves as Θµν ≈O(r−4)� some reative�triks� are neessary to appropriately handle suh a singular behavior in the energy-momentum balane. In our opinion, in most approahes to this problem some additionalassumption slips into the reasoning through one of these �triks�.In this ontext, it is worth mentioning Rowe's work [21, 22℄, where moreelaborated mathematial tools, namely regularization of generalized funtions, are usedto properly handle the singularity in Θµν and obtain the Lorentz-Dira equation. Theuse of generalized funtions (or distributions) has also the advantage that no massrenormalization is neessary.We shall here use these same mathematial tools to review the derivation ofLorentz-Dira equation and see that, ontrary to the ommon belief, it is not a straightonsequene of lassial eletrodynamis plus energy-momentum onservation, but itinludes an elementary extra assumption.We shall here desribe a point harge as a urrent distribution in an extendedmaterial body in the limit where the radius ǫ → 0. The total energy-momentum tensorresults from two ontributions: the eletromagneti part, Θµν , whih is assoiated to the�eld and pervades spaetime, and the material part, Kµν , whih we assume on�ned toa world-tube of radius ǫ and aounts for kineti energy and the stresses that balanethe eletri repulsion among the parts of a neat total harge on�ned in a small volume.For ǫ > 0 both ontributions Θµν and Kµν are ontinuous funtions and an beonsidered separately. But in the limit ǫ → 0, the eletromagneti part presents asingularity O(r−4) on the worldline. Therefore, in the limit ǫ → 0 none of these twoontributions an be properly de�ned, even resorting to generalized funtions. However,nothing forbids the total energy-momentum tensor to onverge to a generalized funtionfor ǫ → 0, whih will likely inlude δ funtions and its derivatives on the point hargeworldline.In our approah we do not need to assume that the involved funtions are analyti.Although Taylor expansions to some �nite order are used, these hold for funtions thatare smooth enough, without need of analytiity [4℄.



On the motion of a lassial harged partile 5We shall examine what restritions on the harge's motion follow from loalonservation of energy and momentum, and �nd that the result is not Lorentz-Diraequation but a somewhat less restritive equation, already derived by Honig and Szamosi[11℄ by extending Dira's work. Then we shall see that this equation admits solutionsthat are free of both preaeleration or runaways.2. Statement of the problem2.1. NotationThe retarded Liénard-Wiehert �eld of a point harge has an outstanding role alongthe present paper. Therefore it will be helpful to use retarded optial oordinates [25℄(as in ref. [21℄) based on a timelike worldline Γ ≡ {zµ(τ)} and an orthonormal tetrad
{eµ

(α)}α=1,2,3,4, whih is Fermi-Walker transported along Γ,
deµ

(α)

dτ
= [vµaν − vνa

µ] eν
(α) . (2)With a properly hosen initial tetrad, the latter evolution equation is onsistent withthe onditions

eµ

(α)e
ν
(β)ηµν = ηαβ , eµ

(4) = vµ = żµ and aµ = v̇µ , (3)where a `dot' means �derivative with respet to τ� and ηµν = (+ + +−). Moreover,from now on we use units suh that c = 1.For any point x in spaetime, the equation
[xµ − zµ(τ)][xν − zν(τ)]ηµν = 0 , (4)supplemented with x4 > z4(τ), has always a unique solution, τ = τ(x), whih de�nes atime oordinate for x.The spae oordinates are
X i = eµ

(i) (xµ − zµ[τ(x)]) (5)and the inverse oordinate transformation then reads
xµ = zµ(τ) + ρvµ(τ) + X ieµ

(i)(τ) , (6)where ρ = ‖ ~X‖ =
√

(X1)2 + (X2)2 + (X3)2.



On the motion of a lassial harged partile 6The following relations and quantities, introdued in ref. [26℄, will be useful hereon:
ρ = −[xµ − zµ(τ)]vµ(τ) , kµ :=

1

ρ
[xµ − zµ(τ)] ,

nµ := kµ − vµ , nµnµ = 1 , kµv
µ = −1 ,







(7)
∂µρ = nµ + ρ(aαnα)kµ . (8)The unit spae vetor nµ an be written as

nµ =
X i

ρ
eµ

(i) ≡ n̂ieµ

(i) .Finally, the relationship between the volume elements in Lorentzian and in retardedoptial oordinates is
d4x = dτ d3 ~X = ρ2dτ dρ d2Ω(n̂) , (9)where d2Ω(n̂) is the solid angle element.2.2. Some de�nitions and postulatesA point harge is desribed by a urrent density four-vetor, jµ, and an energy-momentum tensor, tµν , ful�lling
∂µj

µ = 0 , ∂µtµν = 0 and tµν = tνµ , (10)respetively, the loal onservation laws for total eletri harge, energy-momentum,and angular momentum.We expet to obtain jµ and tµν as the limit of ontinuous distributions of hargeand energy-momentum when the radius goes to zero, namely,(a) an eletri urrent vetor Jµ(ǫ; x), whih is on�ned to an �optial tube� of radius
ǫ around a timelike worldline Γ, that is,

ρ(x) > ǫ ⇒ Jµ(ǫ; x) = 0 , (11)where ρ(x) is given by (7),(b) an energy-momentum tensor T µν(ǫ; x) whih results from two ontributions:
T µν(ǫ; x) = Θµν(ǫ; x) + Kµν(ǫ; x) . (12)The �rst term omes from the total eletromagneti �eld:
F µν(ǫ; x) = F µν

R (ǫ; x) + F µν
ext(x) , (13)



On the motion of a lassial harged partile 7namely, the sum of the retarded solution of the Maxwell equations for the urrent
Jµ(ǫ; x) plus an external free eletromagneti �eld. The seond term in (12) omesfrom the matter distribution whih is also on�ned to the above mentioned �optialtube�:

ρ(x) > ǫ ⇒ Kµν(ǫ; x) = 0 . (14)The above ontinuous distributions of eletri urrent and energy-momentum areassumed to ful�ll the loal onservation laws:
∂µJ

µ = 0 , ∂µT µν = 0 , T µν = T νµ . (15)We shall assume that both Jµ(ǫ; x) and Kµν(ǫ; x) are loally summable in R
4 and that

F µν
ext(x) is ontinuous in R

4.The retarded eletromagneti �eld is given by [19℄
F µν

R (ǫ; x) =
8π

c

∫

J [ν(ǫ; x)∂µ]DR(x − x′) d4x′ (16)with
DR(x) =

1

2π
Y (x4)δ(xρxρ)[Y (x4) is the Heaviside step funtion.℄ The retarded eletromagneti �eld is thus aontinuous funtion and therefore loally summable in R

4.In its turn, the eletromagneti ontribution to the energy-momentum tensor,
Θµν(ǫ; x) =

1

4π

[

F µα(ǫ; x) F ν
α(ǫ; x) −

1

4
ηµνF ρα(ǫ; x) Fρα(ǫ; x)

]

, (17)is also loally summable.The framework where the limits for ǫ → 0 of Jµ(ǫ; x) and T µν(ǫ; x) aremathematially meaningful and an be appropriately handled is the spae D′(R4) ofgeneralized funtions [29, 8℄. As loally summable funtions, Jµ(ǫ; x) and T µν(ǫ; x) anbe assoiated to generalized funtions and, provided that the limits
jµ = lim

ǫ→0
Jµ(ǫ) ∈ D′(R4) , tµν = lim

ǫ→0
T µν(ǫ) ∈ D′(R4)exist, the ontinuity of di�erentiation operators in D′(R4) [30℄ guarantees theonservation laws (10) as the limit of (15) for ǫ → 0.These onservation laws must now be understood in the sense of D′(R4), i. e.

∀ϕ ∈ D(R4) ,

(∂µj
µ, ϕ) = 0 and (∂µt

µν , ϕ) = 0



On the motion of a lassial harged partile 8or
(jµ, ∂µϕ) = 0 and (tµν , ∂µϕ) = 0 . (18)3. The point harge limit3.1. The eletri urrentIf the support of Jµ(ǫ; x) is the �optial tube� ρ(x) ≤ ǫ, then for any ϕ ∈ D(R4) suhthat supp ϕ does not interset the worldline Γ, it exists ǫ1 > 0 suh that ϕ(x) = 0whenever ρ(x) ≤ ǫ1. Therefore, for all ǫ < ǫ1,

(Jµ(ǫ), ϕ) =

∫

d4x Jµ(ǫ; x) ϕ(x) = 0 ,and in the limit ǫ → 0 it follows that
(jµ, ϕ) = 0 , ∀ϕ ∈ D(R4) suh that Γ ∩ supp ϕ = ∅ .The support of the generalized funtion jµ is therefore on�ned to the worldline Γand, aording to a well known result on generalized funtions [31℄, jµ an be writtenas a sum of δ-funtions and its derivatives up to a �nite order:
jµ =

∫

dτ [lµ(τ) δ(x − z(τ)) + lαµ(τ) ∂αδ(x − z(τ)) + . . .

+lα1...αnµ(τ) ∂α1...αn
δ(x − z(τ))] (19)with l(α1...αr)µ vα1

= 0 ; r = 1, . . . n.To model a point harge we only keep the lowest order term and, as a onsequeneof the onservation law (10), we have [26℄
jµ = e

∫

dτ vµ(τ) δ(x − z(τ)) , (20)where e is the eletri harge of the partile and is a onstant salar.3.2. The energy-momentum tensorIn our approah, the limits for Kµν(ǫ) and Θµν(ǫ) do not need to exist separately in
D′(R4). Our assumption is weaker and only the joint limit is assumed to be physiallymeaningful:

tµν = lim
ǫ→0

[Kµν(ǫ) + Θµν(ǫ)] ∈ D′(R4) . (21)



On the motion of a lassial harged partile 9This fat expresses the notion that, although in the separate limits for both Kµν(ǫ) and
Θµν(ǫ) some in�nities on the worldline Γ ould arise, these in�nities will anel eahother, so that tµν is de�ned in D′(R4).3.2.1. The matter ontribution If we restrit to test funtions ϕ ∈ D(R4 −Γ), we havethat

lim
ǫ→0

Kµν(ǫ) = 0 ∈ D′(R4 − Γ) . (22)Indeed, for any ϕ ∈ D(R4 − Γ) it exists ǫ1 > 0 suh that ϕ(x) = 0 whenever ρ(x) ≤ ǫ1.The on�nement ondition (14) then implies that
∀ǫ < ǫ1 , (Kµν(ǫ), ϕ) =

∫

d4xKµν(ǫ; x) ϕ(x) = 0and equation (22) follows [32℄.3.2.2. The eletromagneti ontribution Reall now equations (16) and (17). We havethe pointwise limit
lim
ǫ→0

F µν(ǫ; x) = F µν
R (x) + F µν

ext(x) , (23)where F µν
R (x) is the retarded Liénard-Wiehert �eld, and is de�ned whenever x /∈ Γ. Itan be written as the sum of the radiation �eld plus the veloity �eld:

F µν
R (x) = F µν

I (x) + F µν
II (x) , (24)where, in the notation introdued in subsetion 2.1 (also in ref. [26℄):

F µν
I (x) =

2e

ρ

[

(ak) v[µkν] + a[µkν]
]

, (25)
F µν

II (x) =
2e

ρ2
v[µkν] . (26)(Here (ak) ≡ aλkλ.) Similarly, for the eletromagneti energy-momentum tensor wehave the pointwise onvergene:

lim
ǫ→0

Θµν(ǫ; x) = Θµν(x) ,exept at the points x ∈ Γ.As a onsequene of (23), Θµν(x) an be splitted as
Θµν(x) = Θµν

R (x) + Θµν
ext(x) + Θµν

mix(x) . (27)



On the motion of a lassial harged partile 10The �rst and seond terms in the r. h. s. respetively result from substituting F µν
R (x)and F µν

ext(x) into the quadrati expression (17), whereas Θµν
mix(x) omes from the rossterms.

Θµν
mix(x) and Θµν

ext(x) are loally summable in R
4. This is obvious for Θµν

ext(x) beauseit is ontinuous everywhere. As for Θµν
mix(x), it is a sum of produts of F µν

ext(x), whih isontinuous, and F µν
R (x), whih is also ontinuous exept for a singularity of order ρ−2on Γ that is anelled by the fator ρ2 in the volume element (9). Therefore, Θµν

mix(x) isalso loally summable in R
4. We shall respetively denote:

θµν
ext := lim

ǫ→0
Θµν

ext(ǫ; x) and θµν
mix := lim

ǫ→0
Θµν

mix(ǫ; x) (28)with θext, θmix ∈ D′(R4).Let us now onsider the Θµν
R (x) ontribution. It an be written as [26℄

Θµν
R (x) =

e2

4πρ4

[

vµkν + vνkµ +
1

2
ηµν − kµkν

]

+

e2

4πρ3
[aµkν + aνkµ − (an) (nµkν + nνkµ)] +

e2

4πρ2

[

a2 − (an)2
]

kµkν , (29)whih is ontinuous for x /∈ Γ.Owing to the ρ−4 and ρ−3 singularities on the r.h.s. of the above expression, notonly Θµν
R (x) has a singularity on Γ, but in addition it is not loally summable. Therefore,no generalized funtion in D′(R4) an be assoiated to Θµν

R (x) in the standard way.Now, sine Θµν
R (x) is a ontinuous funtion on R

4 −Γ, it is loally summable there,and this allows to take its �nite part θµν
R ∈ D′(R4) [33, 9℄:

(θµν
R , ϕ) ≡

∫

d4x Θµν
R (x) [ϕ(x) − Y (L − ρ) [ϕ(z) + ρkα∂αϕ(z)]] (30)for any ϕ ∈ D′(R4), where L is an arbitrary hosen length sale, z = z(τ(x)) and τ(x),

kα and ρ(x) are de�ned in (7).Some points onerning the de�nition (30) are worth to omment:(i) The integral in the r.h.s. onverges. Indeed, on the one hand, for ρ > L, Θµν
R (x) isontinuous and ϕ(x) has ompat support and, on the other, inside ρ ≤ L we anuse the mean value Taylor theorem [4℄ for the smooth funtion ϕ:

ϕ(x) = ϕ(z) + ρkλ∂λϕ(z) +
1

2
ρ2kλkµ∂λµϕ(z + ρ′k)



On the motion of a lassial harged partile 11with 0 < ρ′ < ρ(x). Now, sine ϕ is smooth and has ompat support, ∂λµϕ isbounded and it exists M > 0 suh that
∣

∣ϕ(x) − [ϕ(z) + ρkλ∂λϕ(z)]
∣

∣ < Mρ2 , x ∈ supp ϕ , 0 ≤ ρ ≤ L .Hene the integrand in the r.h.s. of (30) presents a singularity of order ρ−2 on Γand therefore the integral onverges.(ii) For a test funtion ϕ ∈ D(R4 − Γ), the funtion and all its derivatives vanish on Γ.Hene, (30) amounts to
(θµν

R , ϕ) =

∫

d4x Θµν
R (x) ϕ(x) . < +∞ (31)(iii) The de�nition (30) onsists of eliminating from the integrand as many terms inthe Taylor expansion of ϕ(x) as neessary, in suh a way that the remainder issummable and the ondition (ii) above is ful�lled. As a onsequene, the �nite part

θµν
R ∈ D′(R4) is not unique. Indeed, on the one hand, we ould have substratedsome more terms in the Taylor expansion of ϕ, and obtained a onvergent integralalso ful�lling the requierement (ii). Besides, the length sale L is quite arbitraryand ould even depend on τ(x).This results in that θµν

R is determined up to a �nite sum of Γ-supported δ-funtions and their derivatives, multiplied by arbitrary τ -dependent oe�ients,in an expression similar to (19). We shall see that this lak of uniqueness in thede�nition of θµν
R is not relevant at all, beause we are not atually interested in

θµν
R but in the total energy-momentum tµν . Here lies the di�erene between ourapproah and that of Rowe [22℄.To give a more spei� expression for θµν

R , we realise that sine the r.h.s. of (30) isonvergent, we an write
(θµν

R , ϕ) = lim
ǫ→0

(
∫

d4xY (ρ − ǫ) Θµν
R (x)ϕ(x)

−

∫

d4xY (ρ − ǫ) Y (L − ρ) Θµν
R (x) [ϕ(z) + ρkα∂αϕ(z)]

)

,whih after a short alulation leads to
θµν

R = θ̂µν
R −

∫

dτ
(

[V µν − U̇µν ] δ(x − z(τ)) − Uλµν ∂λδ(x − z(τ))
)

, (32)where
θ̂µν

R = lim
ǫ→0

[

Θµν
R (x)Y (ρ − ǫ) −

e2

ǫ

∫

dτ

(

1

2
vµvν +

1

6
η̂µν

)

δ(x − z)

] (33)



On the motion of a lassial harged partile 12and the oe�ients V µν , Uµν and Uλµν depend on τ and are:
V µν = −

e2

6L
(3vµvν + η̂µν) +

2e2L

15

(

5a2vµvν + 2a2η̂µν − aµaν
)

, (34)
Uµν =

2

3
e2L (aµvν + aνvµ) +

e2L2

15

(

5a2vµvν + 2a2η̂µν − aµaν
)

, (35)
Uλµν =

e2L

15

(

3aµη̂λν + 3aν η̂λµ − 2aλη̂µν
)

+

e2L2

15

(

2a2[vµη̂λν + vν η̂λµ] − aλ[aµvν + aνvµ]
)

. (36)Notie that they depend on the length sale L.We shall hereafter write
θµν = θµν

R + θµν
ext + θµν

mix . (37)Notie that θµν ∈ D′(R4) ⊂ D′(R4 − Γ) . Now, sine Θµν(x) is loally summable in
R

4 − Γ, it an be onsidered as a generalized funtion Θµν ∈ D′(R4 − Γ) and, as aonsequene of (31) we have that
θµν = Θµν in D′(R4 − Γ) .3.2.3. The total energy-momentum tensor The total energy-momentum tensor tµν isde�ned by the limit (21). For any test funtion ϕ ∈ D(R4−Γ) we have, as a onsequeneof (22), that
(tµν , ϕ) = lim

ǫ→0

∫

d4x Θµν(ǫ, x) ϕ(x)and, using (27), (31) and (37), we obtain
(tµν , ϕ) = (θµν , ϕ) , ∀ϕ ∈ D(R4 − Γ) .Therefore, tµν − θµν ∈ D′(R4) has support on Γ and, aording to a well known result[31℄, it an be written as a �nite sum:

tµν − θµν =

∫

dτ [mµν(τ) δ(x − z(τ)) + mαµν(τ) ∂αδ(x − z(τ)) + . . .

+mα1...αnµν(τ) ∂α1...αn
δ(x − z(τ))] , (38)where

m(α1...αr)µνvα1
= 0 , r = 1 . . . n .So far there is no orrespondene between tµν − θµν and the, so to speak, �matterontribution� to the energy and momentum. Therefore, we are not obliged to assign
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∫

dτ vµvν δ(x− z(τ)), as it is done in ref. [21, 22℄. However,for the sake of the �elementarity� of the point harge we shall retain as few terms in (38)as possible, namely,
tµν = θµν +

∫

dτ
[

mµν(τ) δ(x − z(τ)) + mλµν(τ) ∂λδ(x − z(τ))
]

,whih ombined with (32) and (37) leads to
tµν = θ̂µν

R + θµν
ext + θµν

mix + tµν
s , (39)with

tµν
s ≡

∫

dτ
[

pµν(τ) δ(x − z(τ)) + pλµν(τ) ∂λδ(x − z(τ))
] (40)and

pµν = mµν + U̇µν − V µν , pλµν = mλµν + Uλµν ,where, pλµνvλ = 0 as it obviously follows from (36) and (38).4. Conservation laws and equations of motionThe loal onservation laws (10) will then yield some restritions on the oe�ients pµνand pλµν [14, 10℄. First of all, the symmetry of tµν implies that
pµν = pνµ , pλµν = pλνµ .Now, it is helpful to separate these oe�ients in their omponents respetively paralleland orthogonal to the veloity vµ:

pµν = Mvµvν + pµvν + pνvµ + pµν
⊥ ,

pλµν = Qλvµvν + Qλµvν + Qλνvµ + Qλµν ,







(41)where all tensors and vetors other than vµ are orthogonal to the veloity. The loalonservation law (10) then implies that
∂µθ̂

µν
R + ∂µθµν

ext + ∂µθ
µν
mix + ∂µt

µν
s = 0 . (42)Now, sine θµν

ext is the energy-momentum tensor of a free eletromagneti �eld, ∂µθµν
ext = 0.Similarly, the ross term ontribution is

∂µθ
µν
mix = −F µν

extjµ = −e

∫

dτ F µν
ext(z) vµ(τ) δ(x − z(τ)) (43)



On the motion of a lassial harged partile 14and (see Appendix A [equation (77)℄ for details)
∂µθ̂

µν
R =

2

3
e2

∫

dτ
[

a2vν − ȧν
]

δ(x − z(τ)) . (44)Finally, using (41) and after several integrations by parts, we also obtain
∂µt

µν
s =

∫

dτ

[

d

dτ

(

Mvν + pν + aλ[Q
λvν + Qλν ]

)

δ(x − z)

+

(

vνpµ + pµν
⊥ + η̂µ

λ

d

dτ
[Qλvν + Qλν ]

)

∂µδ(x − z)

+
(

Qλµν + Qλµvν
)

∂λµδ(x − z)
] (45)and, substituting (43), (44) and (45) into (42), we arrive at

0 =

∫

dτ

[{

d

dτ

(

Mvν + pν + aλ[Q
λvν + Qλν ]

)

+
2

3
e2(a2vν − ȧν) − F ν

}

δ(x − z)

+

(

vνpµ + pµν
⊥ + η̂µ

λ

d

dτ
[Qλvν + Qλν ]

)

∂µδ(x − z)

+
(

Qλµν + Qλµvν
)

∂λµδ(x − z)
]

, (46)where F ν ≡ eF µν
ext(z)vµ.As the derivatives of δ-funtions in the r.h.s. are ontrated with tensors that aretransversal to the worldline, eah term must vanish separately and therefore
d

dτ

(

Mvν + pν + aλ[Q
λvν + Qλν ]

)

+
2

3
e2(a2vν − ȧν) = F ν , (47)

vνpµ + pµν
⊥ + η̂µ

λ

d

dτ
[Qλvν + Qλν ] = 0 , (48)

Q(λµ)ν + Q(λµ)vν = 0 . (49)Sine Qλµ and Qλµν are orthogonal to vλ and Qλµν = Qλνµ, equation (49) impliesthat
Q(λµ) = 0 and Qλµν = 0 . (50)Substituting this into (48), we obtain
pµ = − Q̇µ + vµQλaλ − Qµλaλ , (51)
pµν
⊥ = − Qµaν − Q̇µν + vνQµλaλ + vµQλνaλ . (52)Sine pµν

⊥ is symmetri and Qµν is skewsymmetri, it follows that
p

(µν)
⊥ = −Q(µaν) (53)
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Q̇µν = −Q[µaν] − 2v[µQν]λaλ . (54)Finally, substituting (50), (51) and (54) into (47), after a short manipulation we arriveat
d

dτ

(

[

M + 2Qλaλ

]

vν − Q̇ν + 2Qλνaλ

)

+
2

3
e2(a2vν − ȧν) = F ν . (55)On the basis of solely the onservations of energy-momentum and angularmomentum we have thus found that(a) the quantities M, Qλ . . . , Qλµν in equations (41) an be written in terms of onlyten independent partile variables: M , Qλ and Q[λµ], that,(b) together with the worldline variables zµ(τ), vµ(τ), . . . are subjet to the di�erentialsystem (54)�(55).4.1. Total momentum and angular momentumNext, to have a lue of the physial meaning of M , Qλ and Qλν , we examine the totallinear and angular momenta.The total linear momentum ontained in the hypersurfae Γ ≡ {τ = constant} inthe optial oordinates (6), i. e. the future light one with vertex in zµ(τ), is

P µ(τ) =

∫

Γ

dΣν tµν with dΣν = −kν d3 ~X . (56)Inluding now (39), we have that the total momentum P µ results from threeontributions:
P µ = P µ

p + P µ
mix + P µ

ext ,where P µ
mix and P µ

ext respetively ome from the ross term θµν
mix and the external �eldterm θµν

ext in the energy-momentum tensor, and
P µ

p = −

∫

Γ

d3 ~X kν(t
µν
s + θµν

R ) (57)is the ontribution from the harge, i. e. the harge and its inseparable self-�eld.On substituting (33), (29), (40) and (41) into (57), after a little alulation weobtain
P µ

p = Mvµ − Q̇µ +
4

3
aλ(Q

λvµ + Qλµ) . (58)



On the motion of a lassial harged partile 16Similarly, the total angular momentum in the hypersurfae Γ,
Jµν(τ) = −

∫

Γ

d3 ~X kσ (xµtνσ − xνtµσ) ,omes from three ontributions as well: Jµν = Jµν
p + Jµν

mix + Jµν
ext. A similar alulationyields the point harge ontribution

Jµν
p = zµP ν

p − zνP µ
p + Sµν

p ,where
Sµν

p = −2Q[µvν] − 2Q[µν] (59)is the partile internal angular momentum. The seond term on the r. h. s. isorthogonal to the veloity and is the spin of the partile. On its turn, the possibilitythat Qµ ≡ −vνS
µν
p 6= 0 is related with the fat that the enter of motion [10℄ does notneessarily lies on the partile's worldline.To model a spinless harge, we hoose Qµν = 0. Equation (54) then yields

Qµ = Qaµ (60)and (55) an be further simpli�ed to:
d

dτ

(

[

M + 2Qλaλ

]

vν − Q̇ν
)

+
2

3
e2(a2vν − ȧν) = F ν . (61)This agrees with the equation obtained by Honig and Szamosi: (61) is equation (7)in [11℄, with m = M + 2Qa2 − Q̈, R = 2Q̇ and S = Q. Lorentz-Dira equation is apartiular ase for Q = 0.4.2. SummaryA lassial spinless point harge is therefore desribed by(a) the eletri urrent density (20)

jµ = e

∫

dτ vµ(τ) δ(x − z(τ)) ,where the eletri harge e is a onstant salar, and(b) the total energy-momentum tensor (39)
tµν = tµν

s + θ̂µν
R + θµν

ext + θµν
mix
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R and tµν

s are respetively given by (33) and (40), with
pλµν = Qλvµvν , Qλ = Qaλ , (62)
pµν = (M + 2Qλaλ)v

µvν − 2
d

dτ
(Q(µvν)) + Qµaν . (63)The salar variables M and Q, together with the worldline zµ(τ) are subjet to equation(61), whih has been derived on the only basis that linear and angular momenta areonserved, supplemented with the point limit and the assumption that the partile isspinless.5. The equation of motionEquation (61) does not yield the law of motion yet. Indeed, it onsists of four equationsfor �ve unknowns, namely, M , Q and zµ with the onstraint vµvµ = −1. The motion ofthe partile is therefore underdetermined.This should not be surprising. The problem in dynamis of ontinuous media for

ǫ > 0, as we have posed it, is itself underdetermined, beause no onstitutive equationhas been assumed for the material sustaining the eletri harge, ontrary, for instane,to what is done in [34, 15℄, were it is assumed that the harge is rigidly distributed overa spherial shell of radius ǫ.Instead of advaning a matter onstitutive equation for ǫ > 0, then reexaminingthe problem and taking the limit ǫ → 0 to determine a �nal equation of motion, weshall diretly posit a onstitutive relation onneting M , Q and the worldline invariants(urvature, torsion, et.).Notie that, although it is the simplest hoie and looks suitable for an elementaryharge, a presription like Q = 0 is not an appropriate onstitutive relation. Indeed,with a hoie like this, (61) beomes Lorentz-Dira equation whih leads to the dilemmaof solutions that are either preaelerated or runaway.We shall base our guess of a onstitutive relation on the requirements that(a) it onnets M , Q, aν and maybe some of their derivatives,(b) when aν , Q and also their derivatives vanish, then M = m0, and() if the point harge is ated by an external fore F ν that vanishes for τ < 0 and for
τ > τ1, then:
• aν(τ) = 0, M(τ) = m0 and Q(τ) = 0 for τ < 0 and
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• aν → 0, M → m0 and Qaν → 0 asymptotially in the future.(The proper mass has the same value m0 in the in�nite past and future, beause we areassuming that the partile �identity� is �nally preserved.)5.1. Retilinear motionTo see whether a onstitutive relation an be presribed so that (61) admits solutionsthat are neither runaway nor preaelerated, we shall examine the ase of retilinearmotion. (Reall that even in this simple ase Lorentz-Dira equation is not satisfatory.)Consider a point harge that initially is unaelerated and free. Then, during theinterval 0 ≤ τ ≤ τ1, it is ated by an external fore in a onstant diretion along the X1axis. The harge worldline will remain in the plane X1X4 in spaetime and therefore,

dvµ

dτ
= a âµ and

daµ

dτ
= ȧ âµ + a2 vµ ,where âµ is the unit vetor parallel to aµ, i. e. the �rst normal to the worldline. Theoe�ients pµν and pλµν in equations (62) and (63), i. e. the partile's ontribution tothe energy-momentum tensor are

pλµν = qâλvµvν , Qλ = Qaλ , (64)
pµν = M vµvν − q̇ (âµvν + âνvµ) + qa âµâν , (65)with q ≡ Qa.In this ase, the only non-vanishing omponents of equation (61) are

(‖ vµ)
d

dτ
(M + qa) = aq̇ ,

(⊥ vµ) a (M + qa) − q̈ −
2

3
e2ȧ = F .











(66)These two equations must be supplemented with a onstitutive relation M =

M(a, q, q̇) in order that evolution is determined. The phase spae is thereforeoordinated by (a, q, q̇).We would expet that while the harge is not ated by any fore, F (τ) = 0,
−∞ < τ < 0, then it remains in a state of uniform retilinear motion and the energy-momentum tensor is the one orresponding to a free partile together with its Coulomb�eld, i. e. equations (39), (62) and (63) with

a(τ) = 0 , M(τ) = m0 , q(τ) = q̇(τ) = 0 , −∞ < τ < 0 (67)



On the motion of a lassial harged partile 19If an external fore is then swithed on: F (τ) 6= 0, 0 ≤ τ < τ1, then a, M , q and q̇evolve aording to (66) with the initial data inferred from (67) and the ontinuity ofthe orbit in phase spae. This determines
a(τ) , M(τ) , q(τ) and q̇(τ) for 0 < τ < τ1 (68)After that the partile is not ated by a fore any more and what we would expet isthat it asymptotially tends towards a free state, i. e.

a(τ) → 0 , M(τ) → m0 , q(τ) → 0 , q̇(τ) → 0 for τ → ∞(with the same asymptotial value m0 for the mass, in order that the partile's �identity�is preserved).A way to ahieve this behaviour onsists in that the dynamial system (66)supplemented with the onstitutive relation has only one equilibrium point for a =

q = q̇ = 0, whih is asymptotially stable and M(0, 0, 0) = m0.5.2. A dynamial systemUsing the onstant τ0 ≡
2e2

3m0

, we introdue the new dimensionless variables
t ≡

τ

τ0
, 1 + µ ≡

M + qa

m0
, α ≡ a τ0 , ρ ≡

q

m0τ0
(69)and redue (66) with F = 0 to the simpler equivalent system

µ′ = aρ′ , ρ′′ + α′ = α(1 + µ) , µ = µ(α, ρ, ρ′) ,where `prime' means �derivative with respet to t�.Then, by di�erentiating the onstitutive relation and introduing the variable
x ≡ ρ′ + α, we obtain

ρ′ = x − α ,

x′ = α(1 + µ) ,

α′ = A(α, ρ, x) ,















(70)where
A(α, ρ, x) ≡

1

µα

[(x − α)(α − µρ) − αµx(1 + µ)].This dynamial system is already in normal form and is de�ned in the entire phasespae provided that the funtion A(α, ρ, x) has no singularities. Partiularly, if we hoose
µ so that is a solution of

A0(α, ρ, x) µα + (x − α) µρ + α (1 + µ) µx = α(x − α) (71)



On the motion of a lassial harged partile 20with A0(α, ρ, x) = lα + pρ + rx (l, p and r onstant) and µ(0, 0, 0) = 0, then thedynamial system (70) beomes
d

dt









α

ρ

x









=









l p r

−1 0 1

1 0 0

















α

ρ

x









+









0

0

µα









. (72)If p 6= 0, the equilibrium points are
PI : α = ρ = x = 0 ,

PII : x = α = α0 , ρ0 = −
l + r

p
α0 and µ(α0, ρ0, α0) = −1 .Moreover, the onstants l, p and r an be hosen so that the harateristi equation at

PI ,
X3 − lX2 + (p − r)X − p = 0 ,has three negative solutions and hene PI is an asymptotially stable equilibrium point.In Appendix B [equation (81)℄ we see how a solution µ = µ(α, ρ, x) of equation (71)that vanishes at PI = (0, 0, 0) an be perturbatively obtained and is valid at least in aneigbourhood of this phase point.Now, (69) an be used to obtain the onstitutive equation

M = m0 − qam0µ

(

aτ0,
q

m0τ0

, aτ0 +
q̇

m0

)

. (73)This, together with equations (66), determines a motion of the harge that is free ofboth preaeleration and runaways, provided that the fore F ats only during a �niteinterval of time. Indeed, if the harge is unaelerated in past in�nity it remains sountil its state is altered beause F has started to at. Then, when the fore eases, theharge tends to the asymptotially stable equilibrium point a = 0, q = q̇ = 0, at least ifthe system was lose enough when the fore dissapeared.6. ConlusionBy studying the energy-momentum balane of a lassial point harge with theeletromagneti �eld, we have obtained that(a) the total energy-momentum tensor onsists of (i) a regular part, whih omes fromthe external �eld ontribution plus the regularization of the self-�eld ontribution,and (ii) a singular part, with support on the harge worldline.



On the motion of a lassial harged partile 21(b) This singular part depends on two salar oe�ients M(τ) and Q(τ) and on theworldline variables vµ(τ), aµ(τ), . . .() These variables are onstrained to ful�ll the Honig-Szamosi equation [11℄, i. e. (61).Lorentz-Dira equation is obtained only if the onstitutive relation Q = 0 is set byhand. The well known troubles that su�ers the Lorentz-Dira equation are due to thisbad hoie rather than to energy-momentum onservation itself.We have then seen that, at least in the ase of retilinear motion, it is possible to�nd a onstitutive relation M = M(a, Q, Q̇) whih, together with equation (61) yieldsan equation of motion for the point harge that is free from both preaeleration andrunaways. That is, if a harge is initially at rest, with proper mass m0, and is ated byan external fore whih lasts only a �nite interval of time, then there is no aelerationbefore the fore starts and, when its ation eases, the motion tends asymptotially tobe retilinear uniform and the proper mass tends to m0.AknowledgmentThe work of J.Ll. and A.M. is supported by Ministerio de Cienia y Tenología,BFM2003-07076, and Generalitat de Catalunya, 2001SGR-00061 (DURSI). J.M.A. wassupported by the University of the Basque Country, UPV00172.310-14456/2002, andMinisterio de Eduaión y Cienia, FIS2004-01626.Appendix A: Detailed omputation of Eq. (44)Using the de�nition (33), we have that ∀ϕ ∈ D′(R4)

(∂µθ̂µν
R , ϕ) = −(θµν

R , ∂µϕ) = lim
ǫ→0

{

−

∫

ρ≥ǫ

d4x Θµν
R (x)∂µϕ(x) +

e2

2ǫ

∫ ∞

−∞

dτ

[

vµvν +
1

3
η̂µν

]

∂µϕ

}

. (74)Sine Θµν
R (x) is summable for ρ ≥ ǫ, the �rst integral on the r.h.s. beomes

I1 ≡

∫

ρ≥ǫ

d4x ∂µΘµν
R (x)ϕ(x) −

∫

ρ≥ǫ

d4x ∂µ [Θµν
R (x)ϕ(x)] .The �rst term vanishes beause there is no urrent in ρ ≥ ǫ and, applying Gauss theorem,the seond one yields

ǫ2

∫ ∞

−∞

dτ

∫

d2Ω Θµν
R (ρ = ǫ) [nµ + ǫ(an)kµ] ϕ(zλ + ǫkλ) , (75)



On the motion of a lassial harged partile 22where (an) ≡ aλnλ and d2Ω is the solid angle element. Using then equation (29) and theTaylor expansion [4℄ ϕ(z + ǫk) = ϕ(z) + ǫkλ∂λϕ(z) + 1
2
ǫ2kµkλ∂µλϕ(z) + O(ǫ3), equation(75) yields

I1 =

∫ ∞

−∞

dτ

∫

d2Ω

4π

{

−
e2

2ǫ2

(

vνǫ(an)[ϕ + ǫkλ∂λϕ]

+ nν [1 + ǫ(an)] [ϕ + ǫkλ∂λϕ +
1

2
ǫ2kµkλ∂µλϕ]

)

+
e2

ǫ
[aν − (a2)nν ] [ϕ + ǫkλ∂λϕ] + e2 [a2 − (an)2]kν ϕ

}

+ O(ǫ) .On integration with respet to d2Ω and using that
∫

d2Ω nν =

∫

d2Ω nνnµnλ = 0 and

∫

d2Ω nνnµ =
4π

3
η̂νµ ,we arrive at

I1 =
e2

2ǫ

∫ ∞

−∞

dτ

(

aνϕ −
1

3
η̂µν∂µϕ

)

+
2e2

3

∫ ∞

−∞

dτ [a2vν − ȧν ]ϕ . (76)It is straightforward to hek that the �rst term on the r.h.s. exatly ompensates theseond term on the r.h.s. in (74). Therefore we have
∂µθ̂

µν
R =

2

3
e2

∫

dτ
[

a2vν − ȧν
]

δ(x − z(τ)) . (77)Appendix B: The onstitutive relationWe have to solve equation (71)
(lα + pρ + rx) µα + (x − α) µρ + α (1 + µ) µx = α(x − α) (78)with the �initial ondition� µ(0, 0, 0) = 0.It is easily seen that this equation admits a perturbative solution like

µ =
∞

∑

n=1

µ(n)

µ(n) being a polynomial in the variables a, q, x whih is homogeneous and has degree 2n.If we write
D̂ ≡ (lα + pρ + rx)∂α + (x − α)∂ρ + α∂xthen equation (78) yields the hierarhy:

D̂µ(1) = α(x − α) , (79)
n > 1 D̂µ(n) = −

∞
∑

s=1

µ(n−s) α ∂xµ
(s) . (80)
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µ = −

1

2∆

[

(p − r)α2 + p2ρ2 + (r2 + p + rl)x2 − 2pαx + 2rpρx
]
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